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Motivation

Adaptation is ubiquitous in sensory systems. It can express itself through various aftereffects [1]:

- change in discrimination threshold;

- perceptual biases.

Itis commonly believed that these aftereffects arise from a mismatch between encoding and
decoding (i.e., coding catastrophy [2] ). Here we propose a new theoretical framework that
unifies various ideas for a functional understanding of percpetual adaptation.

Key idea: The goal of adaptation is to prepare the perceptual system for the next sensory input.

-- Predicting the distribution for the next input based on input history.
-- Adjusting both encoding and decoding based on this distribution (matching decoding
with encoding) .

Theoretical framework

Efficient coding [16] Bayesian inference
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- piecewise smoothness leads to an

increased probability of future samples
around the previous sample values.

~ Jumping to a new region (self-avoiding [18])
leads to a decreased probability of future
samples around the previous sample values.
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Two sources of ingredients:
—image:  local smoothness + global discreteness
- sampling: inhibition of return

Perceptual adaptation: Getting ready for the future
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Adjusting the sensory representation

Predicted distribution Fisher information
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Bayesian observer model for adaptation
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Cost function:  arg min AiDger( - [|p(6))
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— p(8) = MI(6) + Aos(6) + Aam(6)

Adaptation experiments :
Az is large due to fixation, s(0) is narrow;
m(f) is deeper.

Natural viewing conditions :
Az issmaller, s(6) is wider;
m(f) is more uniform.

For small Gaussian noise [6], maximizing information
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i.e. allocating resource according to prior belief.
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Efficient coding leads to an asymmetry in
the likelihood function, with a heavier tail
away from the peak of the prior [9].

Prediction 2:
-- bias away from adaptor if
stimulus is close to adaptor;

— bias toward adaptor if
stimulus is far away from adaptor.
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+ A theoretical framework for perceptual adaptation:
- predicting the future input distribution;
- efficiently adjusting the sensory representation according to this distribution;
- Bayesian inference based on efficient sensory representation.

« Predictions of perceptual biases and change in discrimination threshold
well match the reported adaptation aftereffects (orientation & spatial frequency).
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