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Perceptual adaptation: Getting ready for the future 

Adaptation is ubiquitous in sensory systems.  It can express itself through various aftereffects [1]:
- change in discrimination threshold;
- perceptual biases.
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It is commonly believed that these aftereffects arise from a mismatch between encoding and
decoding (i.e., coding catastrophy [2] ). Here we propose a new theoretical framework that
unifies various ideas for a functional understanding of percpetual adaptation.

Key idea: The goal of adaptation is to prepare the perceptual system for the next sensory input.
 
 -- Predicting the distribution for the next input based on input history.
 -- Adjusting both encoding and decoding based on this distribution (matching decoding 
     with encoding) .
     

 

  well match the reported adaptation aftereffects (orientation & spatial frequency). 
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For small Gaussian noise [6], maximizing information
Fisher information

             Prediction 2: 

             -- bias away from adaptor if
                 stimulus is close to adaptor;

             -- bias toward adaptor if 
                stimulus is far away from adaptor.
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threshold (data [10])

       bias (data [12])

threshold (data [11])

       bias (data [13])

orientation (deg)

Spatial frequency 
(log unit)

Spatial frequency 
(c/deg)

Spatial frequency 

( also see ref [6, 7, 8])

adaptor

orientation (deg)

Model vs. Data

Orientation

( ref [14])

 replotted
 from [2]

[12] Mitchell & Muir, Vis. Res., 1976.  
[13] Blakemore, Nackmias, Sutton, 1970.  
[14] Seung & Sompolinsky,  PNAS, 1993. 
[15] Wei & Stocker, VSS, 2014.  
[16] Barlow, 1961; Attneave, 1954.
[17] Simoncelli & Olshausen, 2001.
[18] Klein & MacInnes, Psyc. Sci. , 1999.
[19] Fischer & Whitney, Nat. Neuro., 2014.
[20] McGovern, Roach, Webb, J. Vis. ,2014.
[21] Price & Prescott, J. Vis. , 2012.
[22] Mumford & Shah,  1989.

resource

i.e.  allocating resource according to prior belief. ref [4, 5]

ref [3, 9,15]

adaptor

Predicted distribution

long- term

0

short- term 

l(θ)

s(θ)

jumping [4]

m(θ)

p(θ)

λ1 λ2 λ3

λ1 = 1
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Cost function:

p(θ) = λ1l(θ) + λ2s(θ) + λ3m(θ)
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A model of sensory input

Natural scene
 piecewise smooth 
 [2, 17, 22] 
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  Visual sampling: local + jumping (saccades)

-- piecewise smoothness leads to an 
    increased probability of future samples 
    around the previous sample values.

-- Jumping to a new region (self-avoiding [18]) 
    leads to a decreased probability of future 
   samples around the previous sample values.
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Hypothesis:   Exploiting temporal regularities of the input.
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Efficient coding leads to an asymmetry in 
the likelihood function, with a heavier tail
away from the peak of the prior [9].
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Adaptation experiments :

λ2

m(θ) is deeper.

Natural viewing conditions :              

λ2

m(θ) is more uniform.

 is large due to fixation,             is narrow;  

is smaller,            is wider; s(θ)

s(θ)

   Two sources of ingredients: 
-- image:        local smoothness +  global discreteness 
-- sampling:  inhibition of return
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